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Solution 8

1. Consider the problem of minimizing f(z,y,2) = (z + 1)? 4+ y? + 2% subjecting to the

constraint g(z,y,z) = 22 — 2% —y? — 1, z > 0. First solve it by eliminating 2z and then by

Lagrange multipliers.

Solution. Old method. From g = 0 get 22 = 22 + 4> + 1. Plug in f to get h(z,y) =
(x4 1)2 +y? + 22 + y?> + 1. When (z0, 0, 20) is a local minimizer of f subject to g = 0,
(20, y0) is a local minimizer of h(x,y). Hence h, = hy = 0 at (x¢,yo) which yields

2@+1)+2x=0, 2y+2y=0,
sor = —1/2,y = 0. We conclude that (—1/2,0,+v/5/2) is a critical point and hence a
candidate for the local minimizer. (With further reasoning, it is really a global minimizer.)
New method, there is some A such that
rH+l=Xz, y=X\y, 2=—-Xz, 22 —22—¢y?=1.
The fourth equation implies that z is positive, so the third equation yields A = —1. Then
we get = —1/2,y =0 and z = /5/2.

Note. Usually we don’t have to check the condition Vg # (0,0,0) before applying the
theorem on Lagrange multipliers. You may check it if you like when everything is done.

2. Let f,g1, - ,gm be C'-functions defined in some open U in R"*™. Suppose (xq,yo) is
a local extremum of f in {(z,y) € U : ¢i(z,y) = -+ = gm(z,y) = 0 }. Assuming that
DyG(xo,y0) is invertible where G = (g1, ,gm), show that there are \,---, Ay, such
that

VIi+MVg+- -+ AVgm =0,

at (0, vo)-

Solution. Similar to the special case f(x,y,z) over g(x,y,z) = 0 in notes. What we
need is a statement from linear algebra: Let E be an n-dimensional subspace of R"™

and uq,--- ,u; are m-many independent vectors perpendicular to . Then for any w
perpendicular to F, w—i—ZTzl Ajuj = 0. Proof: Pick an orthonormal basis of F, v, -+, vp.
Then vy, -+ , v, U1, - , Uy, form a basis of R"™™. So

W v+ - fnn AU+ A, =0

Taking inner product with vy, we get 0 = w- v+ ur = ug for all k. Hence w—i—E}n:l Ajuj =
0.

3. Let f € C(R) where R is a closed rectangle. Suppose z solves ' = f(t,z) for t € (a,b)
with (¢,2(t)) € R. Show that = can be extended to be a solution in [a, b].

Solution. First, since (¢, z(t)) remains in R which is bounded, there is {t,},t, — b~ such
that z(¢,) — z for some z. We claim in fact z(t) — z as t — b~. For € > 0, take J to
satisfy § < ¢/(2M), M = supp |f|. Then for t,b —t < §, we can find some ¢,, € (¢,b) such
that |z(t,) — 2| < e/2. Then

2(t) — 2| < fa(t) —2(tn)] + |2(tn) — 2]

t
< | fwls)ds| + 5
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9
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By defining x(b) = z, we see that z(t) is continuous on (a, b]. In the relation
t
a(t)=zo+ [ f(s,x(s))ds, t€(ab),
to

we can let ¢ — b~ to show it remains true in (a,b]. It follows that 2’ = f(¢t,x) at t = b
where 2’ is understood as the left derivative. Similarly, we can show the solution extends
to [a,b) too.

4. Let f € C(R) where R is a closed rectangle satisfy a Lipschitz condition in R. Suppose
that = solves 2/ = f(t,x) for t € [a,b] where (b, z()) lies in the interior of R. Show that
there is some ¢ > 0 such that = can be extended as a solution in [a, b+ d].

Solution. Solve the IVP of the equation passing the point (b, z(b)). Since this point lies
in the interior of R, we can find a small rectangle R; inside R taking this point as the
center. By applying the Picard-Lindelof theorem to R; we obtain a solution extending
beyond b, that is, in (b — 6,b + 9) for some §. By uniqueness (see Proposition 3.14) it
coincides with the old solution in their common interval of existence, hence the solution
exists on [a,b+ 0). (By Question 4 actually in [a, b + J], but that is not essential.)

5. Let D = (a,b) x R and f € C(D) satisfy a Lipschitz condition. Let z be a maximal
solution to the (IVP) o’ = f(t,x), x(to) = o, to € (a,b) over the maximal interval («, j3).
Show that if 5 < b, 2(t) — oo or x(t) — —oco as t 1 .

Solution Assume < b < oo and in particular § is finite. In case z(t) does not tend to
oo or —oo, we can find some t,,t, T § such that x(¢,) — z for some z. (see below) As
(B,z) € D we can find a small rectangle R of the form [ — 0,8+ ] x [z — p,z+ p] in D.
For large n, the rectangle [t, — 6/2,t, + /2] x [x(tn) — p/2,x(tn) + p/2] is contained in
R. Now solve the (IVP) starting at (¢, z(t,)). According to the Picard-Lindelof theorem,
the solution exists over some interval (¢, — a,t, + a') where @’ depends only on 4, p, M
and L. (M is the supremum of |f| over R.) As t, T 3,t, +a’ > f8 for sufficiently large n.
That is, the solution exists in beyond 3, contradiction holds.

When z(t) does not blow up at +oo, there are three possibilities (a) sup, z(t) = oo, (b)
inf; x(t) = —oo, and (c) x(t) is bounded. Let us consider (a). As z(t) does not blow up
to oo at 3, there exist some M and 7, — (3 such that z(7,) < M. On the other hand, as
sup, xz(t) = oo, there is s,, —  such that x(s,) > M. By the continuity of z(t), there is
some t,, — [ such that z(t,) = M for all n. We may take z = M in this case. (b) can be
treated similarly and (c) is evident.

6. Let f and g be two continuous functions in D both satisfying a Lipschitz condition and
f < g everywhere. Let x and y be the respective solutions to the (IVP) of f and g
satisfying x(to) < y(to). Show that x(t) < y(t),t > to, as long as they exist.

Solution By continuity, x(t) < y(t) for small ¢ > to. Let t; be the first time the two
solution curves touch, that is, z(¢t1) = y(t1) and z(t) < y(t),t < t;. Then for t € (to, 1),

o(t) = 2(t) _ y(t) ~y(t)
t1 — ¢ t1— ¢

Letting ¢ 1 t1, 2/(t1) > v/(t1), contradicting 2’ = f < g = ¢'. Hence x(t) < y(t),t > to, as
long as they exist.
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7. Let D = R? and f € C(R?) satisfy a Lipschitz condition. Suppose that | f(t,z)| < C(1+]|z]|)
everywhere. Show that all maximal solutions exists on (—oo, 00). Hint: Use the previous
two questions.

Solution Let z(t) be the maximal solution of the (IVP) to o’ = f(¢,x), x(to) = zo. Solve
the (IVP) ¢ = C(1+ |y|) + 1, y(to) = xo + k and 2’ = —C(1 + |z]) — 1, 2(to) = zo — k to
get the maximal solutions y(t) and z(¢) which exist for all time. Here k is a large number
so that o+ k& > 0 and g — k < 0. Therefore, y is positive and z is negative and they solve
the linear equations y' = C(14+y)+ 1 and 2/ = —C(1 — 2) — 1 respectively. We know that
solutions to linear equations exist for all time, see Example 3.14. By the previous question,
z(t) < z(t) < y(t) as long as = exists. As y, z exists for all ¢, in any finite interval [to, ¢,
x cannot blow up to +£oo. By Question 5,  must exist on [tg,00). A similar argument
shows that it also exists on (—oo, tg].

8. Provide a proof to Theorem 3.15 (Picard-Lindelof theorem for systems).

Solution The proof is basically the same as in the equation case. Tutor will do it in class.



