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Solution 8

1. Consider the problem of minimizing f(x, y, z) = (x + 1)2 + y2 + z2 subjecting to the
constraint g(x, y, z) = z2 − x2 − y2 − 1, z > 0. First solve it by eliminating z and then by
Lagrange multipliers.

Solution. Old method. From g = 0 get z2 = x2 + y2 + 1. Plug in f to get h(x, y) =
(x + 1)2 + y2 + x2 + y2 + 1. When (x0, y0, z0) is a local minimizer of f subject to g = 0,
(x0, y0) is a local minimizer of h(x, y). Hence hx = hy = 0 at (x0, y0) which yields

2(x+ 1) + 2x = 0, 2y + 2y = 0 ,

so x = −1/2, y = 0. We conclude that (−1/2, 0,
√

5/2) is a critical point and hence a
candidate for the local minimizer. (With further reasoning, it is really a global minimizer.)

New method, there is some λ such that

x+ 1 = λx, y = λy, z = −λz, z2 − x2 − y2 = 1 .

The fourth equation implies that z is positive, so the third equation yields λ = −1. Then
we get x = −1/2, y = 0 and z =

√
5/2.

Note. Usually we don’t have to check the condition ∇g 6= (0, 0, 0) before applying the
theorem on Lagrange multipliers. You may check it if you like when everything is done.

2. Let f, g1, · · · , gm be C1-functions defined in some open U in Rn+m. Suppose (x0, y0) is
a local extremum of f in {(x, y) ∈ U : g1(x, y) = · · · = gm(x, y) = 0 }. Assuming that
DyG(x0, y0) is invertible where G = (g1, · · · , gm), show that there are λ1, · · · , λm such
that

∇f + λ1∇g + · · ·+ λm∇gm = 0 ,

at (x0, y0).

Solution. Similar to the special case f(x, y, z) over g(x, y, z) = 0 in notes. What we
need is a statement from linear algebra: Let E be an n-dimensional subspace of Rn+m

and u1, · · · , um are m-many independent vectors perpendicular to E. Then for any w
perpendicular to E, w+

∑m
j=1 λjuj = 0 . Proof: Pick an orthonormal basis of E, v1, · · · , vn.

Then v1, · · · , vn, u1, · · · , um form a basis of Rn+m. So

w + µ1v1 + · · ·+ µnvn + λ1u1 + · · ·+ λmum = 0 .

Taking inner product with vk, we get 0 = w ·vk+µk = µk for all k. Hence w+
∑m

j=1 λjuj =
0 .

3. Let f ∈ C(R) where R is a closed rectangle. Suppose x solves x′ = f(t, x) for t ∈ (a, b)
with (t, x(t)) ∈ R. Show that x can be extended to be a solution in [a, b].

Solution. First, since (t, x(t)) remains in R which is bounded, there is {tn}, tn → b− such
that x(tn) → z for some z. We claim in fact x(t) → z as t → b−. For ε > 0, take δ to
satisfy δ < ε/(2M),M = supR |f |. Then for t, b− t < δ, we can find some tn ∈ (t, b) such
that |x(tn)− z| < ε/2. Then

|x(t)− z| ≤ |x(t)− x(tn)|+ |x(tn)− z|

<

∣∣∣∣∫ t

tn

f(s, x(s)) ds

∣∣∣∣+
ε

2

≤ M |tn − t|+
ε

2
≤ ε .
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By defining x(b) = z, we see that x(t) is continuous on (a, b]. In the relation

x(t) = x0 +

∫ t

t0

f(s, x(s)) ds, t ∈ (a, b) ,

we can let t → b− to show it remains true in (a, b]. It follows that x′ = f(t, x) at t = b
where x′ is understood as the left derivative. Similarly, we can show the solution extends
to [a, b) too.

4. Let f ∈ C(R) where R is a closed rectangle satisfy a Lipschitz condition in R. Suppose
that x solves x′ = f(t, x) for t ∈ [a, b] where (b, x(b)) lies in the interior of R. Show that
there is some δ > 0 such that x can be extended as a solution in [a, b+ δ].

Solution. Solve the IVP of the equation passing the point (b, x(b)). Since this point lies
in the interior of R, we can find a small rectangle R1 inside R taking this point as the
center. By applying the Picard-Lindelof theorem to R1 we obtain a solution extending
beyond b, that is, in (b − δ, b + δ) for some δ. By uniqueness (see Proposition 3.14) it
coincides with the old solution in their common interval of existence, hence the solution
exists on [a, b+ δ). (By Question 4 actually in [a, b+ δ], but that is not essential.)

5. Let D = (a, b) × R and f ∈ C(D) satisfy a Lipschitz condition. Let x be a maximal
solution to the (IVP) x′ = f(t, x), x(t0) = x0, t0 ∈ (a, b) over the maximal interval (α, β).
Show that if β < b, x(t)→∞ or x(t)→ −∞ as t ↑ β.

Solution Assume β < b ≤ ∞ and in particular β is finite. In case x(t) does not tend to
∞ or −∞, we can find some tn, tn ↑ β such that x(tn) → z for some z. (see below) As
(β, z) ∈ D we can find a small rectangle R of the form [β − δ, β + δ]× [z − ρ, z + ρ] in D.
For large n, the rectangle [tn − δ/2, tn + δ/2] × [x(tn) − ρ/2, x(tn) + ρ/2] is contained in
R. Now solve the (IVP) starting at (tn, x(tn)). According to the Picard-Lindelof theorem,
the solution exists over some interval (tn − a′, tn + a′) where a′ depends only on δ, ρ,M
and L. (M is the supremum of |f | over R.) As tn ↑ β, tn + a′ > β for sufficiently large n.
That is, the solution exists in beyond β, contradiction holds.

When x(t) does not blow up at ±∞, there are three possibilities (a) supt x(t) = ∞, (b)
inft x(t) = −∞, and (c) x(t) is bounded. Let us consider (a). As x(t) does not blow up
to ∞ at β, there exist some M and τn → β such that x(τn) < M . On the other hand, as
supt x(t) = ∞, there is sn → β such that x(sn) > M . By the continuity of x(t), there is
some tn → β such that x(tn) = M for all n. We may take z = M in this case. (b) can be
treated similarly and (c) is evident.

6. Let f and g be two continuous functions in D both satisfying a Lipschitz condition and
f < g everywhere. Let x and y be the respective solutions to the (IVP) of f and g
satisfying x(t0) < y(t0). Show that x(t) < y(t), t ≥ t0, as long as they exist.

Solution By continuity, x(t) < y(t) for small t > t0. Let t1 be the first time the two
solution curves touch, that is, x(t1) = y(t1) and x(t) < y(t), t < t1. Then for t ∈ (t0, t1),

x(t1)− x(t)

t1 − t
>
y(t1)− y(t)

t1 − t
.

Letting t ↑ t1, x′(t1) ≥ y′(t1), contradicting x′ = f < g = y′. Hence x(t) < y(t), t > t0, as
long as they exist.
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7. LetD = R2 and f ∈ C(R2) satisfy a Lipschitz condition. Suppose that |f(t, x)| ≤ C(1+|x|)
everywhere. Show that all maximal solutions exists on (−∞,∞). Hint: Use the previous
two questions.

Solution Let x(t) be the maximal solution of the (IVP) to x′ = f(t, x), x(t0) = x0. Solve
the (IVP) y′ = C(1 + |y|) + 1, y(t0) = x0 + k and z′ = −C(1 + |z|)− 1, z(t0) = x0 − k to
get the maximal solutions y(t) and z(t) which exist for all time. Here k is a large number
so that x0 +k > 0 and x0−k < 0. Therefore, y is positive and z is negative and they solve
the linear equations y′ = C(1 + y) + 1 and z′ = −C(1− z)− 1 respectively. We know that
solutions to linear equations exist for all time, see Example 3.14. By the previous question,
z(t) < x(t) < y(t) as long as x exists. As y, z exists for all t, in any finite interval [t0, t],
x cannot blow up to ±∞. By Question 5, x must exist on [t0,∞). A similar argument
shows that it also exists on (−∞, t0].

8. Provide a proof to Theorem 3.15 (Picard-Lindelof theorem for systems).

Solution The proof is basically the same as in the equation case. Tutor will do it in class.


