Solution 8

1. Consider the problem of minimizing $f(x, y, z) = (x + 1)^2 + y^2 + z^2$ subjecting to the constraint $g(x, y, z) = z^2 - x^2 - y^2 - 1$, z > 0. First solve it by eliminating z and then by Lagrange multipliers.

Solution. Old method. From g = 0 get $z^2 = x^2 + y^2 + 1$. Plug in f to get $h(x, y) = (x+1)^2 + y^2 + x^2 + y^2 + 1$. When (x_0, y_0, z_0) is a local minimizer of f subject to g = 0, (x_0, y_0) is a local minimizer of h(x, y). Hence $h_x = h_y = 0$ at (x_0, y_0) which yields

$$2(x+1) + 2x = 0, \quad 2y + 2y = 0$$

so x = -1/2, y = 0. We conclude that $(-1/2, 0, \sqrt{5}/2)$ is a critical point and hence a candidate for the local minimizer. (With further reasoning, it is really a global minimizer.) New method, there is some λ such that

$$x + 1 = \lambda x, \ y = \lambda y, \ z = -\lambda z, \ z^2 - x^2 - y^2 = 1$$

The fourth equation implies that z is positive, so the third equation yields $\lambda = -1$. Then we get x = -1/2, y = 0 and $z = \sqrt{5}/2$.

Note. Usually we don't have to check the condition $\nabla g \neq (0,0,0)$ before applying the theorem on Lagrange multipliers. You may check it if you like when everything is done.

2. Let f, g_1, \dots, g_m be C^1 -functions defined in some open U in \mathbb{R}^{n+m} . Suppose (x_0, y_0) is a local extremum of f in $\{(x, y) \in U : g_1(x, y) = \dots = g_m(x, y) = 0\}$. Assuming that $D_y G(x_0, y_0)$ is invertible where $G = (g_1, \dots, g_m)$, show that there are $\lambda_1, \dots, \lambda_m$ such that

$$\nabla f + \lambda_1 \nabla g + \dots + \lambda_m \nabla g_m = 0 ,$$

at (x_0, y_0) .

Solution. Similar to the special case f(x, y, z) over g(x, y, z) = 0 in notes. What we need is a statement from linear algebra: Let E be an *n*-dimensional subspace of \mathbb{R}^{n+m} and u_1, \dots, u_m are *m*-many independent vectors perpendicular to E. Then for any w perpendicular to $E, w + \sum_{j=1}^{m} \lambda_j u_j = 0$. Proof: Pick an orthonormal basis of E, v_1, \dots, v_n . Then $v_1, \dots, v_n, u_1, \dots, u_m$ form a basis of \mathbb{R}^{n+m} . So

$$w + \mu_1 v_1 + \dots + \mu_n v_n + \lambda_1 u_1 + \dots + \lambda_m u_m = 0$$

Taking inner product with v_k , we get $0 = w \cdot v_k + \mu_k = \mu_k$ for all k. Hence $w + \sum_{j=1}^m \lambda_j u_j = 0$.

3. Let $f \in C(R)$ where R is a closed rectangle. Suppose x solves x' = f(t, x) for $t \in (a, b)$ with $(t, x(t)) \in R$. Show that x can be extended to be a solution in [a, b].

Solution. First, since (t, x(t)) remains in R which is bounded, there is $\{t_n\}, t_n \to b^-$ such that $x(t_n) \to z$ for some z. We claim in fact $x(t) \to z$ as $t \to b^-$. For $\varepsilon > 0$, take δ to satisfy $\delta < \varepsilon/(2M), M = \sup_R |f|$. Then for $t, b - t < \delta$, we can find some $t_n \in (t, b)$ such that $|x(t_n) - z| < \varepsilon/2$. Then

$$\begin{aligned} |x(t) - z| &\leq |x(t) - x(t_n)| + |x(t_n) - z| \\ &< \left| \int_{t_n}^t f(s, x(s)) \, ds \right| + \frac{\varepsilon}{2} \\ &\leq M |t_n - t| + \frac{\varepsilon}{2} \\ &\leq \varepsilon . \end{aligned}$$

By defining x(b) = z, we see that x(t) is continuous on (a, b]. In the relation

$$x(t) = x_0 + \int_{t_0}^t f(s, x(s)) \, ds, \quad t \in (a, b) ,$$

we can let $t \to b^-$ to show it remains true in (a, b]. It follows that x' = f(t, x) at t = b where x' is understood as the left derivative. Similarly, we can show the solution extends to [a, b) too.

4. Let $f \in C(R)$ where R is a closed rectangle satisfy a Lipschitz condition in R. Suppose that x solves x' = f(t, x) for $t \in [a, b]$ where (b, x(b)) lies in the interior of R. Show that there is some $\delta > 0$ such that x can be extended as a solution in $[a, b + \delta]$.

Solution. Solve the IVP of the equation passing the point (b, x(b)). Since this point lies in the interior of R, we can find a small rectangle R_1 inside R taking this point as the center. By applying the Picard-Lindelof theorem to R_1 we obtain a solution extending beyond b, that is, in $(b - \delta, b + \delta)$ for some δ . By uniqueness (see Proposition 3.14) it coincides with the old solution in their common interval of existence, hence the solution exists on $[a, b + \delta)$. (By Question 4 actually in $[a, b + \delta]$, but that is not essential.)

5. Let $D = (a, b) \times \mathbb{R}$ and $f \in C(\overline{D})$ satisfy a Lipschitz condition. Let x be a maximal solution to the (IVP) $x' = f(t, x), x(t_0) = x_0, t_0 \in (a, b)$ over the maximal interval (α, β) . Show that if $\beta < b, x(t) \to \infty$ or $x(t) \to -\infty$ as $t \uparrow \beta$.

Solution Assume $\beta < b \leq \infty$ and in particular β is finite. In case x(t) does not tend to ∞ or $-\infty$, we can find some $t_n, t_n \uparrow \beta$ such that $x(t_n) \to z$ for some z. (see below) As $(\beta, z) \in D$ we can find a small rectangle R of the form $[\beta - \delta, \beta + \delta] \times [z - \rho, z + \rho]$ in D. For large n, the rectangle $[t_n - \delta/2, t_n + \delta/2] \times [x(t_n) - \rho/2, x(t_n) + \rho/2]$ is contained in R. Now solve the (IVP) starting at $(t_n, x(t_n))$. According to the Picard-Lindelof theorem, the solution exists over some interval $(t_n - a', t_n + a')$ where a' depends only on δ, ρ, M and L. (M is the supremum of |f| over R.) As $t_n \uparrow \beta, t_n + a' > \beta$ for sufficiently large n. That is, the solution exists in beyond β , contradiction holds.

When x(t) does not blow up at $\pm \infty$, there are three possibilities (a) $\sup_t x(t) = \infty$, (b) $\inf_t x(t) = -\infty$, and (c) x(t) is bounded. Let us consider (a). As x(t) does not blow up to ∞ at β , there exist some M and $\tau_n \to \beta$ such that $x(\tau_n) < M$. On the other hand, as $\sup_t x(t) = \infty$, there is $s_n \to \beta$ such that $x(s_n) > M$. By the continuity of x(t), there is some $t_n \to \beta$ such that $x(t_n) = M$ for all n. We may take z = M in this case. (b) can be treated similarly and (c) is evident.

6. Let f and g be two continuous functions in \overline{D} both satisfying a Lipschitz condition and f < g everywhere. Let x and y be the respective solutions to the (IVP) of f and g satisfying $x(t_0) < y(t_0)$. Show that $x(t) < y(t), t \ge t_0$, as long as they exist.

Solution By continuity, x(t) < y(t) for small $t > t_0$. Let t_1 be the first time the two solution curves touch, that is, $x(t_1) = y(t_1)$ and $x(t) < y(t), t < t_1$. Then for $t \in (t_0, t_1)$,

$$\frac{x(t_1) - x(t)}{t_1 - t} > \frac{y(t_1) - y(t)}{t_1 - t}$$

Letting $t \uparrow t_1$, $x'(t_1) \ge y'(t_1)$, contradicting x' = f < g = y'. Hence $x(t) < y(t), t > t_0$, as long as they exist.

7. Let $D = \mathbb{R}^2$ and $f \in C(\mathbb{R}^2)$ satisfy a Lipschitz condition. Suppose that $|f(t, x)| \leq C(1+|x|)$ everywhere. Show that all maximal solutions exists on $(-\infty, \infty)$. Hint: Use the previous two questions.

Solution Let x(t) be the maximal solution of the (IVP) to $x' = f(t, x), x(t_0) = x_0$. Solve the (IVP) y' = C(1 + |y|) + 1, $y(t_0) = x_0 + k$ and $z' = -C(1 + |z|) - 1, z(t_0) = x_0 - k$ to get the maximal solutions y(t) and z(t) which exist for all time. Here k is a large number so that $x_0 + k > 0$ and $x_0 - k < 0$. Therefore, y is positive and z is negative and they solve the linear equations y' = C(1 + y) + 1 and z' = -C(1 - z) - 1 respectively. We know that solutions to linear equations exist for all time, see Example 3.14. By the previous question, z(t) < x(t) < y(t) as long as x exists. As y, z exists for all t, in any finite interval $[t_0, t]$, x cannot blow up to $\pm \infty$. By Question 5, x must exist on $[t_0, \infty)$. A similar argument shows that it also exists on $(-\infty, t_0]$.

8. Provide a proof to Theorem 3.15 (Picard-Lindelof theorem for systems). **Solution** The proof is basically the same as in the equation case. Tutor will do it in class.